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Abstract 

Next generation of automotive driving support requires the ability to anticipate driving hazards better 

than humans. We present a novel approach for “copying” and aggregating driving expert knowledge of 

scene danger ranking by using a multi-task DNN. As every danger is different and that it is impossible 

to gather all examples of danger in a training dataset, we inspired from humans and showed that 

combining features from obstacles, motion, distance, possible trajectories, focus and anticipation 

allows to reason about the context of new scenes to rank the danger. We established an incrementa l 

transfer learning process for training from doubly sparse labels (few samples of hazard represented by 

few pixels). We present the danger dataset and provide an analysis of the ranking ability. From one 

pixel, the DNN is able to provide the danger level for every pixel in the image. We conclude positively 

about the feasibility of scene danger ranking. 
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Introduction 

Next generation of automotive driving support (e.g. connected autonomous vehicles - CAV) will 

certainly require the ability to anticipate driving hazards better than humans. For instance, to avoid 

hazardous situations and navigate safely in crowded urban scenario, CAV must realize complex 

judgements such as the ranking of the dangerous areas in a scene. Our aim is to create a machine with 

the skill of anticipating what will happen on the road ahead by considering complex hazardous 

situations.  

 

We consider that the key for safe maneuver decisions of CAV is to use the absolute danger level of 

each area of the scene as input to path planning algorithms. Whatever the driving scenario is, this 

information will in particular allow to dynamically adjust the margin around obstacles according to 

their level of danger. As opposition of today’s fixed navigation margins [3], dynamic margins would 

avoid deadlock of CAV and allow continuity of service in narrow and crowded space. 

 

Today’s path planning decisions are computed from dynamic maps by combining high accuracy 3D 

NAVI map, ego-vehicle dynamics data and obstacle map made from multiple sensors to detect 

obstacles and predict their positions based on their dynamics [5], [6]. Path planning algorithms could 

be enhanced by adding the danger map to the dynamic map (Figure 1), which would insure minimal 
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risk during navigation (safest path).   

 

Figure 1 – Danger Level Map allows the computation of the safest path that anticipates possible risks and 

decides their level 

 

In this paper, we will present our approach for “copying” and aggregating driving expert knowledge of 

scene danger ranking by using deep neural network (DNN). In section ‘Related works’, we will review 

prior art on danger estimation and position our contributions. In section ‘End-to-End DNN for scene 

danger ranking’, we will describe and justify how we aim to cover all dangers (felt by humans) in 

every scene in a comprehensive way. We will show how we plan to cope with the facts that every 

danger is different and that it is impossible to gather all examples of danger in a training dataset. As 

real hazards are much less frequent that non-hazardous situations, we will show how we cope for 

training a DNN from doubly sparse labels (few samples of hazard represented by few pixels in input 

images). This is done by incremental transfer learning of multi tasks inspired from human reasoning. 

In section ‘Experiments’, we will present how we gathered the most important dataset: the dataset of 

danger levels. Next, we will describe in details the DNN architecture and the training process. We will 

discuss the achievements and explain why we concluded positively about the feasibility of absolute 

scene danger ranking from knowledge captured based on subjective danger level appraisal. Finally, we 

will conclude and propose the next actions to demonstrate large-scale danger raking ability of a DNN. 

 

Related works on danger and risk assessment 

In [11] the authors predict generic (not specifically driving) accidents in an agent-centric way using a 

soft-attention Recurrent Neural Network (RNN) modelling the interactions between the agents or 

static regions involved in the accidents. This system cannot cope with sparse labels, cannot estimate 

levels of danger when there is no danger event explicitly happening and it cannot handle situations 

with simultaneous multiple potentially dangerous objects.  

In [4], the authors calculate the level of danger of vehicle collis ion with in-path pedestrians based on 

pedestrian distance, response distance and braking distance. In [10] the authors observe that irregular 

motion behavior and low illumination are additionally sources of threat. These systems strongly 

assume that obstacle detection is always successful and either rely on limited types of dangerous scene 

elements or limited danger clues.  

In [1], the authors propose a method to identify the current Traffic Scene (TS) from a multiplicity of 

modalities and to classify this TS as dangerous by using a neural network trained on TS labelled as 
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dangerous using predefined rules. This system is limited to recognize situations inside the range of 

finite rules hard-coded by humans. Additionally, this system cannot identify the scene elements that 

make the situation dangerous which is necessary for safest path computation.  

In [9], the authors design a Markov Chain model to predict the driving risk status from instantaneous 

driving risk levels determined in time-to-collision (ttc) and time-headway (thd) two-dimension plane 

and feature vectors made from information such as vehicle movement, traffic, environmental status  

and obstacle detection. This model is based on high level information, and does not use any 

intermediate information coming from the input of imaging sensors (LIDAR, camera). Its prediction is 

therefore blind to events that are not taken into account by the vector features (crossing animal, flare 

blinding the driver…) and do not localize hazards.  

 

From the literature, we can understand that an ideal danger prediction model should be able to handle 

sparse labels and situations where the danger is not yet developing or when multiple elements in the 

scene are potentially dangerous. The model should not be limited by hard-coded rules and should 

identify all the hazardous elements in the scene. Finally, the model should not depend explicitly on 

obstacle detection and should instead benefit from all features available from the imaging sensors. 

 

End-to-End DNN for scene danger ranking 

As previously stated, each hazardous situation is unique but yet humans (drivers) have developed the 

ability to reason about the context of the scene to safely drive in each new situation. In [7], the authors 

analyze how drivers detect and respond to roadway hazards and propose a framework of hazard 

avoidance. They introduce the definitions of hazards, their precursors, the prioritization of precursors. 

Monitoring of hazards is described as resulting from overt and covert attention mechanisms. Indeed, 

while facing a hazardous situation (during driving), human drivers cannot explain how they decide 

about hazard locations, hazard priorities and vehicle control. It confirms that prioritizing hazard is a 

covert mechanism and thus there is no perfect objective measure of hazard (localization and priority 

level). The danger ranking DNN must reproduce subjectively appraised danger locations and levels. 

 

Drivers (experts) are however better to explain their subjective decisions a posteriori (e.g. by watching 

recorded videos). Questionnaires could have been useful to gather the required training dataset. But 

unfortunately, we could never gather enough hazard samples to insure high reliability in training 

end-to-end DNN using solely danger locations and levels as image labels. This is why we propose a 

DNN architecture that combines the information used by human for reasoning about hazards.  

 

DNN architecture inspired from human reasoning 

When expert drivers are asked to explain a posteriori why they decided to react to hazards, severa l 

keywords appear relevant: obstacles, motion, distance, possible trajectories, focus and hazard 

anticipation. These are key concepts that most probably allow humans to reason over scenes in order 

to successfully handle new situations. But the state of art in driving psychology and behavior analysis 
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[7] does not explain how to efficiently combine this information to decide about hazards.  

 

We aim to provide end-to-end multi task deep neural network that takes an image or a time series of 

images as input, generates the above-mentioned relevant information, and uses them to generate a 

pixel-wise danger ranking image as output (Figure 1). Major arguments towards end-to-end learning 

are: first, by learning a deep neural network end-to-end we could optimize every neural connection at 

once, which is the most efficient way of training (especially when we do not know how to combine 

key information); second, end-to-end learning is adapted to modelling abstract concepts (e.g. danger, 

its ranking and its anticipation); and third, the end-to-end trained neural network is easily transferable 

and compatible with all deep learning frameworks, so our danger ranking deep neural network could 

be easily installed as a building block of any automotive systems. 

 

Training via incremental transfer learning 

The danger ranking training method we are proposing enables to train from sparse labels a deep neura l 

network to identify within images or image sequences the regions of various danger levels. We have 

designed a specific deep transfer learning [8] curriculum which both compensates for the sparsity of 

training data and ensures that our system will learn and take advantage of the multiple key concepts 

used by expert drivers’ reasoning. Such achievement is possible thanks to the decomposition of the 

training procedure into several training steps including generic (A) and specific image recognition (B), 

specific motion and distance estimation (C), object trajectory prediction (D) and focus on potentia l 

danger areas (E) acquired through saliency and eye tracking. The process we have designed, illustrated 

in Figure 2, starts by training blocks to learn generic knowledge with larger amount of training data 

and next transfers the learning to following blocks learning more specific knowledge with not enough 

training samples to be learned as standalone processes. 

 

Figure 2: Flow chart of transfer knowledge learning 

The two object recognition blocks (A) and (B) allow the training method to first learn the features 

necessary for classifying any object and next classifying specific objects related to the automotive 

context. Distance and motion estimations (C) ensure learning the features to understand how the 

objects are positioned with respect to the ego-vehicle and how they move in the environment. Object 

trajectory prediction (D) allows learning how objects will move with respect to each other (chain 

Generic objects Automotive objects Motion, distance Object prediction Focus danger 
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effect). Saliency-based danger focusing (E) trains the method for learning how humans react to new 

hazardous environment. Finally, the end-to-end deep neural network (combined knowledge - F) 

includes the top layers of the transfer learning blocks, thus receiving the trained features associated to 

each previous knowledge as shown in Figure 3. As can be seen in Figure 2 and Figure 3, the transfer 

learning is incrementally applied to transfer the most structured (object-wise) and dense knowledge 

(e.g. A and B) to the less structured (saliency, danger) and sparse knowledge (e.g. E, F). 

 

Figure 3: Flow chart for knowledge combination. 

Experiments 

In our experiments, we have used the transfer learning process as described above. The combined 

knowledge (DNN-F in Figure 3) corresponds to the final end-to-end DNN that could optimally 

combine the different information to finally evaluate for each pixel, the danger location and its level.  

This DNN plays a role of integrator or “chef d'orchestre”. 

 

In order to perform series of transfer learning steps one must use similar architectures of DNN, so that 

each consecutive training starts from a previously trained model and fine-tune it by using a new 

dataset specific to the new knowledge we want to acquire. Whereas the datasets required to train A~E 

blocks are rather standard datasets, the dataset required to train the DNN for the ‘combined knowledge 

F’ block needs to be labelled with danger location and danger level. This dataset and the fina l 

architecture are presented in the next sections. 

 

Dataset of driving situation labelled with sparse labels of danger levels 

The dataset was constructed with the goal to test the feasibility of creating a model for danger 

localization and ranking using very sparse labels. We agreed on specific criteria of danger definition.  

The subject who annotated the dataset consistently was looking at still images (looking at video 

footage will be done in next experiment). The subject was requested to actively search the area with 

maximum danger level according to the following definition: 

• Danger Level-0: no action needed to change ego-car trajectory 

F 
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• Danger Level-1: anticipatory braking or lane change when collision risk is minimal 

• Danger Level-2: controlled braking or lane change with enough time to perform maneuver 

• Danger Level-3: rapid braking or lane change or stopping required to avoid collision 

• Danger Level-4: emergency braking or violent steering to avoid collision resulting in near miss or 

eventually a mitigated collision 

 

Current dataset is composed of original cityscapes (3.5K) images (train+val) [2]. The detailed protocol 

for danger rating was the followings: 

• The subject (16 years experimented driver with no accident record) sees a black screen for 250ms (time 

to forget previous image taken from typical psychology experiments) 

• The subject observes the image (640 x 320) up to 1500ms 

• The subject clicks with mouse pointer on the object that he considers the most dangerous 

• System records the location of the pixels and subjects’s reaction time (x, y, reaction time) 

• System converts single pixel to a circle of diameter 5% of image (average object size) width 

• Danger label is created with Rank of danger between 0-4 (low-high) related to reaction time (T): 

rank_danger= 5*(T-450)/1100, where 450ms is the minimum reaction time measured experimentally 

and 1100ms is normalized corresponding the maximum reaction time of 1500ms measured 

experimentally.  

 

In this experiment, the danger level is proportional to the time required by the subject to see the 

dangerous area. The longer the subject searches in the image, the more difficult it is to decide the 

danger level and the more dangerous/hazardous the situation is. Totally 5 sessions of labelling were 

made during 2 months of tagging by the same subject. Due to the fact that the same person was used, 

we expect coherency between labels, danger levels and scenes. This coherency is particularly useful to 

get absolute danger ranking which will allow the DNN to treat all scenes in the same way. We consider 

these labels as a good way to capture coherently the subjectivity of self-rating of danger levels. These 

labels should be a good start for our feasibility study but in the future, they should be complemented 

and validated by multiple experts such as driving instructors. This will allow to further rely on the 

input training data and also aggregate the multiple knowledges to finally get a DNN better than a 

single expert.   

 

Detailed training procedure 

A new architecture of deep neural network FCN8s-Pyramid was proposed. It uses VGG16 for 

convolutional part and our own design of de-convolutional part inspired by state of art PSP-Network 

[12]. The latter part was modified to replace the original ResNet base, for compatibility and training 

acceleration purposes.  

As shown in Figure 4, our multi-task deep neural network architecture (green) shares a single VGG16 

convolutional part (blue – block A) trained on ImageNet 1M dataset and combines into one fusion 

block (green)5 deconvolution parts (input image size 384x384x3, limited by 12GB size of RAM on 
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modern GPU) each corresponding to a specific transfer learning block (red - B~E). At the time being 

the block (D) of object prediction is not yet integrated in the architecture. To cope with th is lack, we 

gave during training to the DNN F the access to present and future frames which implicitly include the 

information about future trajectories.   

 

Figure 4: Network architecture for multi-task fusion of 5 transfer learning blocks. 

The final multi-task danger ranking module (F) that aggregates all transfer learning blocks was trained 

using very sparse labels as described in the previous section. Using middle level GPU (GTX 1060) of 

6GB of RAM, each block was individually trained with a task specific dataset (public domain 

datasets) and fine-tuned on own recorded videos. We could complete the training in 1 week and 

achieved 10 fps for inference processing.  

Experimental results and discussion 

We aimed to confirm the merit of combining the different information for the task of danger ranking. 

The visual interface to analyze live danger level maps and those of transfer learning blocks is shown 

on Figure 5. Activation maps show the importance of image area (red=high level, blue=low level, 

black=non-important) for each transfer learning block for final decision of danger rank for each pixel. 

 

Figure 5 Results of danger ranking and transfer learning blocks (low danger levels not shown) 
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The analysis of activation maps demonstrates how differently each transfer learning block focuses on 

the most important image area from its own perspective: 

• Automotive object recognition (B): mostly focused on objects on the right, including main focus on 

nearby pedestrians. We hypothesize that this block is directly looking for objects.  

• Depth map (C): major focus on the road center. We hypothesize that this block estimates free space. 

• Saliency map (E): major focus on horizon. We hypothesize that this block aims to detect newly 

appearing object in long range (in case of empty road). 

• Danger ranking single-task (E): focused mostly on close road area. We hypothesize that this block is 

looking for nearby obstacles on a road. 

• Danger ranking multi-task (F): very narrow but high-level focus on results of above blocks. We 

hypothesize that this block plays a role of integrator of information and ranking by priority (benefit of 

multi-task compared to single-task) 

Our architecture was confirmed as suitable with middle level GPUs and able of solving the multi-task 

fusion at 10fps. Qualitative analysis of multi-task danger ranking DNN performance in various driving 

scenarios suggests that danger ranking benefits from transfer learning. This supports our main 

hypothesis that danger ranking is feasible via sequence of transfer learning from multiple tasks.  

 

The qualitative analysis of the danger ranking (F) on scene that were never used during the training, 

showed that it is possible to realize the task of danger ranking. Danger ranking DNN (F) was able to 

rank imminent danger and interestingly to also rank hidden danger (such as between 2 parked cars 

Figure 6 - b). At present, we consider that the danger ranking task is not completed. For example it is 

not clear to us why the pedestrian moving along the pavement is ranked as dangerous (Figure 6 - e) 

 

  

 

Figure 6 Example of results of danger ranking – (a,b,c,d) expected, (e) unexplained behavior. 

(a) (b) 

(c) (d) 

(e) 
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Note that at present, we cannot provide quantitative figures on the performance because we have not 

defined yet how to efficiently evaluate 1 pixel click ground truth with the resulting dense pixel map. 

 

Conclusion 

• This paper showed that it is feasible to reproduce by DNN subjectively rated information such 

as danger ranking. From our knowledge, it is the first DNN of its kind. It opens the possibility 

to drastically enhance the maneuver planning algorithms to be integrated in CAV. 

• Qualitative analysis of multi-task danger ranking performance in various driving scenarios 

suggests that danger ranking benefits from transfer learning of information inspired from 

human reasoning. 

• Initial version of danger ranking via multi-task fusion of transfer learning blocks was realized. 

FCN8s-Pyramid architecture was confirmed as suitable to be used with middle level GPUs 

and capable of solving the multi-task fusion of different blocks. 

• The training method allowed us to confirm that dense danger map (each pixel of image) could 

be obtained from sparse input. This suggests that creating a training dataset of single pixe l 

danger levels annotation per frame would be sufficient to rank the dangers, thus making this 

method scalable. 

• We do not claim that danger ranking task is solved. We have demonstrated its feasibility. 

Despite the various tasks that are pending (integrate trajectory prediction, validate the labels of 

danger levels and aggregate more labels from many experts, process video instead of single 

frames), the major challenge that we are facing is to build a multi-disciplinary team combining 

multiple knowledges (deep learning, cognitive science, driving psychology, vehicle control) to 

strengthen our scientific choices. 

• We are open to collaborations in this challenging domain, to make it happen… 
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